Coupling of L-Type Ca Channels to KV7/KCNQ Channels Creates a Novel, Activity-Dependent, Homeostatic Intrinsic Plasticity
نویسندگان
چکیده
Wu WW, Chan CS, Surmeier DJ, Disterhoft JF. Coupling of L-type Ca channels to KV7/KCNQ channels creates a novel, activity-dependent, homeostatic intrinsic plasticity. J Neurophysiol 100: 1897–1908, 2008. First published August 20, 2008; doi:10.1152/jn.90346.2008. Experience-dependent modification in the electrical properties of central neurons is a form of intrinsic plasticity that occurs during development and has been observed following behavioral learning. We report a novel form of intrinsic plasticity in hippocampal CA1 pyramidal neurons mediated by the KV7/KCNQ and CaV1/L-type Ca 2 channels. Enhancing Ca influx with a conditioning spike train (30 Hz, 3 s) potentiated the KV7/KCNQ channel function and led to a long-lasting, activity-dependent increase in spike frequency adaptation—a gradual reduction in the firing frequency in response to sustained excitation. These effects were abolished by specific blockers for CaV1/L-type Ca 2 channels, KV7/KCNQ channels, and protein kinase A (PKA). Considering the widespread expression of these two channel types, the influence of Ca influx and subsequent activation of PKA on KV7/KCNQ channels may represent a generalized principle in fine tuning the output of central neurons that promotes stability in firing—an example of homeostatic regulation of intrinsic membrane excitability.
منابع مشابه
Coupling of L-type Ca Channels to KV7/KCNQ Channels Creates a Novel, Activity-Dependent, Homeostatic Intrinsic Plasticity Abbreviated Title: KV7/KCNQ Channel-Mediated Intrinsic Plasticity
Experience-dependent modification in the electrical properties of central neurons is a form of intrinsic plasticity that occurs during development and has been observed following behavioral learning. We report a novel form of intrinsic plasticity in hippocampal CA1 pyramidal neurons mediated by the KV7/KCNQ and CaV1/L-type Ca 2+ channels. Enhancing Ca influx with a conditioning spike train (30H...
متن کاملCoupling of L-type Ca2+ channels to KV7/KCNQ channels creates a novel, activity-dependent, homeostatic intrinsic plasticity.
Experience-dependent modification in the electrical properties of central neurons is a form of intrinsic plasticity that occurs during development and has been observed following behavioral learning. We report a novel form of intrinsic plasticity in hippocampal CA1 pyramidal neurons mediated by the KV7/KCNQ and CaV1/L-type Ca2+ channels. Enhancing Ca2+ influx with a conditioning spike train (30...
متن کاملRapid activity-dependent modulation of the intrinsic excitability through up-regulation of KCNQ/Kv7 channel function in neonatal spinal motoneurons
Activity-dependent changes in the properties of the motor system underlie the necessary adjustments in its responsiveness on the basis of the environmental and developmental demands of the organism. Although plastic changes in the properties of the spinal cord have historically been neglected because of the archaic belief that the spinal cord is constituted by a hardwired network that simply re...
متن کاملM-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment.
Alterations in synaptic input, persisting for hours to days, elicit homeostatic plastic changes in the axon initial segment (AIS), which is pivotal for spike generation. Here, in hippocampal pyramidal neurons of both primary cultures and slices, we triggered a unique form of AIS plasticity by selectively targeting M-type K+ channels, which predominantly localize to the AIS and are essential for...
متن کاملInhibition of Post-Synaptic Kv7/KCNQ/M Channels Facilitates Long-Term Potentiation in the Hippocampus
Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M(1) mAChR on CA1 pyramidal cells inhibit both small conductance Ca(2+)-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca(2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008